Amyloid β peptide oligomers directly activate NMDA receptors.
نویسندگان
چکیده
Amyloid beta (Aβ) oligomers accumulate in the brain tissue of Alzheimer disease patients and are related to disease pathogenesis. The precise mechanisms by which Aβ oligomers cause neurotoxicity remain unknown. We recently reported that Aβ oligomers cause intracellular Ca(2+) overload and neuronal death that can be prevented by NMDA receptor antagonists. This study investigated whether Aβ oligomers directly activated NMDA receptors (NMDARs) using NR1/NR2A and NR1/NR2B receptors that were heterologously expressed in Xenopus laevis oocytes. Indeed, Aβ oligomers induced inward non-desensitizing currents that were blocked in the presence of the NMDA receptor antagonists memantine, APV, and MK-801. Intriguingly, the amplitude of the responses to Aβ oligomers was greater for NR1/NR2A heteromers than for NR1/NR2B heteromers expressed in oocytes. Consistent with these findings, we observed that the increase in the cytosolic concentration of Ca(2+) induced by Aβ oligomers in cortical neurons is prevented by AP5, a broad spectrum NMDA receptor antagonist, but slightly attenuated by ifenprodil which blocks receptors with the NR2B subunit. Together, these results indicate that Aβ oligomers directly activate NMDA receptors, particularly those with the NR2A subunit, and further suggest that drugs that attenuate the activity of such receptors may prevent Aβ damage to neurons in Alzheimeŕs disease.
منابع مشابه
Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors.
In Alzheimer's disease (AD), dementia severity correlates strongly with decreased synapse density in hippocampus and cortex. Numerous studies report that hippocampal long-term potentiation (LTP) can be inhibited by soluble oligomers of amyloid β-protein (Aβ), but the synaptic elements that mediate this effect remain unclear. We examined field EPSPs and whole-cell recordings in wild-type mouse h...
متن کاملAmyloid-β oligomers set fire to inflammasomes and induce Alzheimer's pathology
Genetic and molecular studies have confirmed the central role of amyloid-ß production and fibrillation in the pathogenesis of Alzheimer’s disease (AD). However, the pathological pathways from amyloid-ß peptide oligomerization to the major pathological hallmarks of AD, such as neurofibrillary tangles, inflammation and loss of cholinergic neurons, are largely unknown. The innate immunity defence ...
متن کاملPostsynaptic Receptors for Amyloid-β Oligomers as Mediators of Neuronal Damage in Alzheimer’s Disease
The neurotoxic effect of amyloid-β peptide (Aβ) over the central synapses has been described and is reflected in the decrease of some postsynaptic excitatory proteins, the alteration in the number and morphology of the dendritic spines, and a decrease in long-term potentiation. Many studies has been carried out to identify the putative Aβ receptors in neurons, and is still no clear why the Aβ o...
متن کاملOpposing synaptic regulation of amyloid-β metabolism by NMDA receptors in vivo.
The concentration of amyloid-β (Aβ) within the brain extracellular space is one determinant of whether the peptide will aggregate into toxic species that are important in Alzheimer's disease (AD) pathogenesis. Some types of synaptic activity can regulate Aβ levels. Here we demonstrate two distinct mechanisms that are simultaneously activated by NMDA receptors and regulate brain interstitial flu...
متن کاملThe Level of NMDA Receptor in the Membrane Modulates Amyloid-β Association and Perforation.
Alzheimer's disease is a neurodegenerative disorder that affects mostly the elderly. The main histopathological markers are the senile plaques formed by amyloid-β peptide (Aβ) aggregates that can perforate the plasma membrane of cells, increasing the intracellular calcium levels and releasing synaptic vesicles that finally lead to a delayed synaptic failure. Several membrane proteins and lipids...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell calcium
دوره 49 3 شماره
صفحات -
تاریخ انتشار 2011